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Data Preprocessing Steps
###### Read the data in ######
data <- read.csv( "insurance.csv')

###### Print the first rows ######
print (head(data, 5))

##  age sex bmi children smoker region  charges
## 1 19 female 27.900 0 yes southwest 16884.924
## 2 18 male 33.770 1 no southeast 1725.552
## 3 28 male 33.000 3 no southeast 4449.462
## 4 33 male 22.705 0 no northwest 21984.471
## 5 32 male 28.880 0 no northwest 3866.855

###### Print the columns' names ######
print(colnames(data))

## [1] "age" "sex" "bmi" "children" "smoker"

###### Print number of rows ######
print (nrow(data))

## [1] 1338

###### Converting to Numeric Variables ######
sex <- ifelse(data["sex"] == "female", 0, 1)
smoker <- ifelse(data["smoker"] == "yes", 1, 0)
region <- as.numeric(data$region)

##### Replacing columns in the Data ######
data["sex"] <- sex

data["smoker"] <- smoker

data["region"] <- region

"region"

"charges"

Linear Models - using the purrr package to get individual models



###### Linear Regression ######
vars = c('age', 'sex',
#Using the purrr package to run all the models corresponding to the predictors

models <- vars %>} paste ('charges ~', .) ¥%>% map(as.formula) %>/ map(lm, data)

'bmi', 'children', 'smoker', 'region')

Summaries of the Models

Age

# age summary

summary (models[[1]])

##

## Call:

## .f(formula = .x[[i]], data = ..1)

#t

## Residuals:

## Min 1Q Median 3Q Max

## -8059 -6671 -5939 5440 47829

#t

## Coefficients:

it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 3165.9 937.1 3.378 0.000751 *xx
## age 257.7 22.5 11.453 < 2e-16 **x*
#t -

## Signif. codes: O 's*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#t

## Residual standard error: 11560 on 1336 degrees of freedom
## Multiple R-squared: 0.08941, Adjusted R-squared: 0.08872
## F-statistic: 131.2 on 1 and 1336 DF, p-value: < 2.2e-16

Sex

# sex summary
summary (models[[2]])

##

## Call:

## .f(formula = .x[[i]], data = ..1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12835 -8435 -3980 3476 51201

##

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 12569.6 470.1 26.740 <2e-16 *xx*
## sex 1387.2 661.3 2.098 0.0361 =*
## ———

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##



## Residual standard error: 12090 on 1336 degrees of freedom
## Multiple R-squared: 0.003282, Adjusted R-squared: 0.002536
## F-statistic: 4.4 on 1 and 1336 DF, p-value: 0.03613

BMI

# bmi summary
summary (models [[3]])

##

## Call:

## .f(formula = .x[[i]], data = ..1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -20956 -8118 -3757 4722 49442

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1192.94 1664.80 0.717 0.474

## bmi 393.87 53.256 T7.397 2.46e-13 ***

##t ———

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 11870 on 1336 degrees of freedom

## Multiple R-squared: 0.03934, Adjusted R-squared: 0.03862

## F-statistic: 54.71 on 1 and 1336 DF, p-value: 2.459e-13

Children

# children summary
summary (models [[4]])

##

## Call:

## .f(formula = .x[[i]], data = ..1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11585 -8759 -4071 3468 51248

##

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) 12522.5 446.5 28.049 <2e-16 *xx*
## children 683.1 274 .2 2.491 0.0129 =*
## —--

## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 12090 on 1336 degrees of freedom
## Multiple R-squared: 0.004624, Adjusted R-squared: 0.003879
## F-statistic: 6.206 on 1 and 1336 DF, p-value: 0.01285

Smoker



# smoker summary
summary (models[[5]])

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
.f(formula = .x[[i]], data = ..1)
Residuals:

Min 1Q Median 3Q Max
-19221 -5042 -919 3705 31720
Coefficients:

Estimate Std. Error t value Pr(>|tl|)

(Intercept) 8434 .3 229.0 36.83 <2e-16 **x
smoker 23616.0 506.1 46 .66 <2e-16 **x
Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
Residual standard error: 7470 on 1336 degrees of freedom

Multiple R-squared: 0.6198, Adjusted R-squared: 0.6195
F-statistic: 2178 on 1 and 1336 DF, p-value: < 2.2e-16

Region

# region summary
summary (models[[6]])

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
.f(formula = .x[[i]], data = ..1)
Residuals:

Min 1Q Median 3Q Max
-12116 -8517 -3930 3347 50533
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13441.60 823.85 16.316 <2e-16 *xx
region -68.04 299.86 -0.227 0.821
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12110 on 1336 degrees of freedom

Multiple R-squared: 3.854e-05, Adjusted R-squared: -0.0007099
F-statistic: 0.05149 on 1 and 1336 DF, p-value: 0.8205

Linear Model with All Predictors



###### Model with all the predictors ######

allpreds <- 1lm(charges ~ data)

Summary of the Model

#AAAHAH Summary #EHAHH

summary (allpreds)

##

## Call:

## lm(formula = charges ~ ., data = data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11343 -2807 -1017 1408 29752

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[t])

## (Intercept) -11461.81 983.00 -11.660 < 2e-16 ***

## age 257.29 11.89 21.647 < 2e-16 *xx

## sex -131.11 332.81 -0.394 0.693681

## bmi 332.57 27.72 11.997 < 2e-16 ***

## children 479.37 137.64  3.483 0.000513 *xx

## smoker 23820.43 411.84 57.839 < 2e-16 ***

## region -353.64 151.93 -2.328 0.020077 *

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## Residual standard error: 6060 on 1331 degrees of freedom
## Multiple R-squared: 0.7507, Adjusted R-squared: 0.7496
## F-statistic: 668.1 on 6 and 1331 DF, p-value: < 2.2e-16
Linear Model with the Most Relevant Predictors
most_rel <- lm(charges ~ age + bmi + children + smoker, data)
Summary of the Model

summary (most_rel)

##

## Call:

## lm(formula = charges ~ age + bmi + children + smoker, data = data)



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Residuals:

Min 1Q Median 3Q Max
-11897.9 -2920.8 -986.6 1392.2 29509.6
Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) -12102.77 941.98 -12.848 < 2e-16 **x
age 257.85 11.90 21.675 < 2e-16 **x*
bmi 321.85 27.38 11.756 < 2e-16 ***
children 473.50 137.79 3.436 0.000608 ***
smoker 23811.40 411.22 57.904 < 2e-16 **x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
Residual standard error: 6068 on 1333 degrees of freedom

Multiple R-squared: 0.7497, Adjusted R-squared: 0.7489
F-statistic: 998.1 on 4 and 1333 DF, p-value: < 2.2e-16

Random Forest Model

###### Random Forest Model ######
set.seed(100)

#setting a train and test set

train <- sample(nrow(data), 0.8*nrow(data), FALSE)
trainset <- datal[train,]

testset <- datal[-train,]

random.forestl <- randomForest(charges ~ ., trainset, 500, 6,

TRUE)

random. forestl

##
##
##
##
##
##
##
##
##

Call:
randomForest (formula = charges ~ ., data = trainset, ntree = 500, mtry = 6, importance = TRUE)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 6

Mean of squared residuals: 23810804
% Var explained: 83.23

Generating the plot

plot( "Random Forest Error vs. Number of Trees", random.forestl)



Random Forest Error vs. Number of Trees
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Generating a Confusion Matrix
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In order to get a better model, I decided to use the ifelse() function in R and get a cutoff of the data
i.e. using the Mean and Median in this case 10,000 USD to predict charges. Less than or equal to

10,000 is 0, and more than or equal is a 1.

Summary of the testset$charges variable

summary (testset$charges)

#i Min. 1st Qu. Median Mean 3rd Qu.
## 1136 4748 8277 13459 16357

Confusion Matrix - using the Caret Package

###### Testing the model ######
prediction <- predict(random.forestl,

prediction <- ifelse(prediction <= 10000, 0, 1)

Max.
63770

testset)

testing <- ifelse(testset$charges <= 10000, 0, 1)

confusionMatrix(factor(prediction,
factor(testing,

min(testing) :max (testing)),
min(testing) :max(testing)))



## Confusion Matrix and Statistics

#it

## Reference

## Prediction 0 1

## 0 127 6

## 1 24 111

#i#

## Accuracy : 0.8881
## 95% CI : (0.8441, 0.9232)
## No Information Rate : 0.5634
## P-Value [Acc > NIR] : < 2.2e-16
#i#

## Kappa : 0.7763
##

## Mcnemar's Test P-Value : 0.001911
##

## Sensitivity : 0.8411
## Specificity : 0.9487
## Pos Pred Value : 0.9549
## Neg Pred Value : 0.8222
## Prevalence : 0.5634
## Detection Rate : 0.4739
## Detection Prevalence : 0.4963
## Balanced Accuracy : 0.8949
##

## 'Positive' Class : O

##

Tuning the Random Forest Model

The tuneRF() function comes from the randomForest package.

According to the documentation, this function starts from the given parameter of mtry - 3 in this example
- and searches for the optimal value of mtry.

With respect to Out-of-Bag error estimate

set.seed(100)
tuning.model <- tuneRF(
testset,
testset$charges,
600,
3,
0.5,
0.03,
FALSE

## 0.4708423 0.03
## 0.076087 0.03
## -0.04261731 0.03
## -18.84259 0.03
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Benefits of Random Forest

-Easy to interpret the models
-Could be used for regression or classification
-Could be used in large datasets

Pitfalls of Random Forest

-Are prone to overfitting
-Accuraccy tends to be lower than other Machine Learning techniques
-High Variance
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