Internship Report in R

Internship Report
Importing Packages

Data Preprocessing Steps
Read the data in
data <- read.csv("insurance.csv')

Print the first rows
print (head(data, 5))

age sex bmi children smoker region charges
1 19 female 27.900 0 yes southwest 16884.924
2 18 male 33.770 1 no southeast 1725.552
3 28 male 33.000 3 no southeast 4449.462
4 33 male 22.705 0 no northwest 21984.471
5 32 male 28.880 0 no northwest 3866.855

Print the columns' names
print(colnames(data))

[1] "age" "sex" "bmi" "children" "smoker"

Print number of rows
print (nrow(data))

[1] 1338

Converting to Numeric Variables
sex <- ifelse(data["sex"] == "female", 0, 1)
smoker <- ifelse(data["smoker"] == "yes", 1, 0)
region <- as.numeric(data$region)

Replacing columns in the Data
data["sex"] <- sex

data["smoker"] <- smoker

data["region"] <- region

"region"

"charges"

Linear Models - using the purrr package to get individual models

Linear Regression
vars = c('age', 'sex',
#Using the purrr package to run all the models corresponding to the predictors

models <- vars %>} paste ('charges ~', .) ¥%>% map(as.formula) %>/ map(lm, data)

'bmi', 'children', 'smoker', 'region')

Summaries of the Models

Age

age summary

summary (models[[1]])

##

Call:

.f(formula = .x[[i]], data = ..1)

#t

Residuals:

Min 1Q Median 3Q Max

-8059 -6671 -5939 5440 47829

#t

Coefficients:

it Estimate Std. Error t value Pr(>ltl)

(Intercept) 3165.9 937.1 3.378 0.000751 *xx
age 257.7 22.5 11.453 < 2e-16 **x*
#t -

Signif. codes: O 's*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#t

Residual standard error: 11560 on 1336 degrees of freedom
Multiple R-squared: 0.08941, Adjusted R-squared: 0.08872
F-statistic: 131.2 on 1 and 1336 DF, p-value: < 2.2e-16

Sex

sex summary
summary (models[[2]])

##

Call:

.f(formula = .x[[i]], data = ..1)

##

Residuals:

Min 1Q Median 3Q Max

-12835 -8435 -3980 3476 51201

##

Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

(Intercept) 12569.6 470.1 26.740 <2e-16 *xx*
sex 1387.2 661.3 2.098 0.0361 =*
———

Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

Residual standard error: 12090 on 1336 degrees of freedom
Multiple R-squared: 0.003282, Adjusted R-squared: 0.002536
F-statistic: 4.4 on 1 and 1336 DF, p-value: 0.03613

BMI

bmi summary
summary (models [[3]])

##

Call:

.f(formula = .x[[i]], data = ..1)

##

Residuals:

Min 1Q Median 3Q Max

-20956 -8118 -3757 4722 49442

##

Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

(Intercept) 1192.94 1664.80 0.717 0.474

bmi 393.87 53.256 T7.397 2.46e-13 ***

##t ———

Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

Residual standard error: 11870 on 1336 degrees of freedom

Multiple R-squared: 0.03934, Adjusted R-squared: 0.03862

F-statistic: 54.71 on 1 and 1336 DF, p-value: 2.459e-13

Children

children summary
summary (models [[4]])

##

Call:

.f(formula = .x[[i]], data = ..1)

##

Residuals:

Min 1Q Median 3Q Max

-11585 -8759 -4071 3468 51248

##

Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

(Intercept) 12522.5 446.5 28.049 <2e-16 *xx*
children 683.1 274 .2 2.491 0.0129 =*
—--

Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

Residual standard error: 12090 on 1336 degrees of freedom
Multiple R-squared: 0.004624, Adjusted R-squared: 0.003879
F-statistic: 6.206 on 1 and 1336 DF, p-value: 0.01285

Smoker

smoker summary
summary (models[[5]])

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
.f(formula = .x[[i]], data = ..1)
Residuals:

Min 1Q Median 3Q Max
-19221 -5042 -919 3705 31720
Coefficients:

Estimate Std. Error t value Pr(>|tl|)

(Intercept) 8434 .3 229.0 36.83 <2e-16 **x
smoker 23616.0 506.1 46 .66 <2e-16 **x
Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
Residual standard error: 7470 on 1336 degrees of freedom

Multiple R-squared: 0.6198, Adjusted R-squared: 0.6195
F-statistic: 2178 on 1 and 1336 DF, p-value: < 2.2e-16

Region

region summary
summary (models[[6]])

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
.f(formula = .x[[i]], data = ..1)
Residuals:

Min 1Q Median 3Q Max
-12116 -8517 -3930 3347 50533
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13441.60 823.85 16.316 <2e-16 *xx
region -68.04 299.86 -0.227 0.821
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12110 on 1336 degrees of freedom

Multiple R-squared: 3.854e-05, Adjusted R-squared: -0.0007099
F-statistic: 0.05149 on 1 and 1336 DF, p-value: 0.8205

Linear Model with All Predictors

Model with all the predictors

allpreds <- 1lm(charges ~ data)

Summary of the Model

#AAAHAH Summary #EHAHH

summary (allpreds)

##

Call:

lm(formula = charges ~ ., data = data)

##

Residuals:

Min 1Q Median 3Q Max

-11343 -2807 -1017 1408 29752

##

Coefficients:

#it Estimate Std. Error t value Pr(>[t])

(Intercept) -11461.81 983.00 -11.660 < 2e-16 ***

age 257.29 11.89 21.647 < 2e-16 *xx

sex -131.11 332.81 -0.394 0.693681

bmi 332.57 27.72 11.997 < 2e-16 ***

children 479.37 137.64 3.483 0.000513 *xx

smoker 23820.43 411.84 57.839 < 2e-16 ***

region -353.64 151.93 -2.328 0.020077 *

——-

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

Residual standard error: 6060 on 1331 degrees of freedom
Multiple R-squared: 0.7507, Adjusted R-squared: 0.7496
F-statistic: 668.1 on 6 and 1331 DF, p-value: < 2.2e-16
Linear Model with the Most Relevant Predictors
most_rel <- lm(charges ~ age + bmi + children + smoker, data)
Summary of the Model

summary (most_rel)

##

Call:

lm(formula = charges ~ age + bmi + children + smoker, data = data)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Residuals:

Min 1Q Median 3Q Max
-11897.9 -2920.8 -986.6 1392.2 29509.6
Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) -12102.77 941.98 -12.848 < 2e-16 **x
age 257.85 11.90 21.675 < 2e-16 **x*
bmi 321.85 27.38 11.756 < 2e-16 ***
children 473.50 137.79 3.436 0.000608 ***
smoker 23811.40 411.22 57.904 < 2e-16 **x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
Residual standard error: 6068 on 1333 degrees of freedom

Multiple R-squared: 0.7497, Adjusted R-squared: 0.7489
F-statistic: 998.1 on 4 and 1333 DF, p-value: < 2.2e-16

Random Forest Model

Random Forest Model
set.seed(100)

#setting a train and test set

train <- sample(nrow(data), 0.8*nrow(data), FALSE)
trainset <- datal[train,]

testset <- datal[-train,]

random.forestl <- randomForest(charges ~ ., trainset, 500, 6,

TRUE)

random. forestl

##
##
##
##
##
##
##
##
##

Call:
randomForest (formula = charges ~ ., data = trainset, ntree = 500, mtry = 6, importance = TRUE)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 6

Mean of squared residuals: 23810804
% Var explained: 83.23

Generating the plot

plot("Random Forest Error vs. Number of Trees", random.forestl)

Random Forest Error vs. Number of Trees

3.5e+07
|

Error

2.5e+07
|

0 100 200

Generating a Confusion Matrix

300 400 500

trees

In order to get a better model, I decided to use the ifelse() function in R and get a cutoff of the data
i.e. using the Mean and Median in this case 10,000 USD to predict charges. Less than or equal to

10,000 is 0, and more than or equal is a 1.

Summary of the testset$charges variable

summary (testset$charges)

#i Min. 1st Qu. Median Mean 3rd Qu.
1136 4748 8277 13459 16357

Confusion Matrix - using the Caret Package

Testing the model
prediction <- predict(random.forestl,

prediction <- ifelse(prediction <= 10000, 0, 1)

Max.
63770

testset)

testing <- ifelse(testset$charges <= 10000, 0, 1)

confusionMatrix(factor(prediction,
factor(testing,

min(testing) :max (testing)),
min(testing) :max(testing)))

Confusion Matrix and Statistics

#it

Reference

Prediction 0 1

0 127 6

1 24 111

#i#

Accuracy : 0.8881
95% CI : (0.8441, 0.9232)
No Information Rate : 0.5634
P-Value [Acc > NIR] : < 2.2e-16
#i#

Kappa : 0.7763
##

Mcnemar's Test P-Value : 0.001911
##

Sensitivity : 0.8411
Specificity : 0.9487
Pos Pred Value : 0.9549
Neg Pred Value : 0.8222
Prevalence : 0.5634
Detection Rate : 0.4739
Detection Prevalence : 0.4963
Balanced Accuracy : 0.8949
##

'Positive' Class : O

##

Tuning the Random Forest Model

The tuneRF() function comes from the randomForest package.

According to the documentation, this function starts from the given parameter of mtry - 3 in this example
- and searches for the optimal value of mtry.

With respect to Out-of-Bag error estimate

set.seed(100)
tuning.model <- tuneRF(
testset,
testset$charges,
600,
3,
0.5,
0.03,
FALSE

0.4708423 0.03
0.076087 0.03
-0.04261731 0.03
-18.84259 0.03

OOB Error
1.5e+07
|

5.0e+06
I

— 0

Benefits of Random Forest

-Easy to interpret the models
-Could be used for regression or classification
-Could be used in large datasets

Pitfalls of Random Forest

-Are prone to overfitting
-Accuraccy tends to be lower than other Machine Learning techniques
-High Variance

Citation: Towards Al

For Comparison with Python Models (Links)

GitHub Pages for the Internship | GitHub Repository
Heroku App - using Dash and Plotly

24

https://towardsai.net/p/machine-learning/why-choose-random-forest-and-not-decision-trees
https://arcelioeperez.github.io/dash-app/
https://github.com/arcelioeperez/dash-app/tree/gh-pages
https://my-internship-app.herokuapp.com/

	Internship Report
	Importing Packages
	Data Preprocessing Steps
	Linear Models - using the purrr package to get individual models
	Summaries of the Models
	Linear Model with All Predictors
	Summary of the Model
	Linear Model with the Most Relevant Predictors
	Summary of the Model
	Random Forest Model
	Generating the plot
	Generating a Confusion Matrix
	Confusion Matrix - using the Caret Package

	Tuning the Random Forest Model
	Benefits of Random Forest
	Pitfalls of Random Forest

	For Comparison with Python Models (Links)

